These instructions include the Benchmark Commissioning Checklist and should be left with the user for safe keeping.
Natural Gas

Potterton Promax SL 12 Heat ErP
G.C.N 41 592 34
Potterton Promax SL 15 Heat ErP
G.C.N 41 592 35
Potterton Promax SL 18 Heat ErP
G.C.N 41 592 36
Potterton Promax SL 24 Heat ErP
G.C.N 41 592 37

The Benchmark Scheme

Benchmark places responsibilities on both manufacturers and installers. The purpose is to ensure that customers are provided with the correct equipment for their needs, that it is installed, commissioned and serviced in accordance with the manufacturer’s instructions by competent persons and that it meets the requirements of the appropriate Building Regulations. The Benchmark Checklist can be used to demonstrate compliance with Building Regulations and should be provided to the customer for future reference.

Installers are required to carry out installation, commissioning and servicing work in accordance with the Benchmark Code of Practice which is available from the Heating and Hotwater Industry Council who manage and promote the Scheme. Visit www.centralheating.co.uk for more information.

Building Regulations and the Benchmark Commissioning Checklist

Building Regulations (England & Wales) require notification of the installation of a heating appliance to the relevant Local Authority Building Control Department. From 1 April 2005 this can be achieved via a Competent Persons Self Certification Scheme as an option to notifying the Local Authority directly. Similar arrangements will follow for Scotland and will apply in Northern Ireland from 1 January 2006.

The Health & Safety Executive operates the ‘Gas Safe Register’, a self-certification scheme for gas heating appliances.

These arrangements represent a change from the situation whereby compliance with Building Regulations was accepted as being demonstrated by completion of the Benchmark Logbook (which was then left on site with the customer).

With the introduction of Self Certification Schemes, the Benchmark Logbook is being withdrawn. However, a similar document in the form of a commissioning checklist and service interval record is incorporated at the back of these instructions.

This company is a member of the Benchmark initiative and fully supports the aims of the programme. Its aim is to improve the standards of installation and commissioning of central heating systems in the UK and to encourage the regular servicing of all central heating systems to ensure safety and efficiency.

Building Regulations require that installations should comply with manufacturer’s instructions. It is therefore important that the commissioning checklist is completed by the installer. The relevant section of Building Regulations only relates to dwellings. Therefore the checklist only applies if the appliance is being installed in a dwelling or some related structure.

Building Regulations require that installations should comply with manufacturer’s instructions. It is therefore important that the commissioning checklist is completed by the installer. The relevant section of Building Regulations only relates to dwellings. Therefore the checklist only applies if the appliance is being installed in a dwelling or some related structure.

The flowchart opposite gives guidance for installers on the process necessary to ensure compliance with Building Regulations.
Choose Building Regulations Notification Route

Competent Person’s Self Certification Scheme

Install and Commission this appliance to manufacturer’s instructions

Complete the Benchmark Checklist

If you notify via the ‘Gas Safe Register’, the register will issue the Building Regulations certificate on members’ behalf

Scheme Members only

Call ‘Gas Safe Register’ on:
0800 408 5577
or log onto:
www.gassaferegister.co.uk
within 10 days

You must ensure that the certificate number issued by the ‘Gas Safe Register’ is written onto the Benchmark Checklist

‘Gas Safe Register’ will issue a Building Regulations Compliance Certificate to the property owner and inform the relevant LABC

Building Control

Contact your relevant Local Authority Building Control (LABC) who will arrange an inspection or contact a government approved inspector

Install and Commission this appliance to manufacturer’s instructions

Complete the Benchmark Checklist

LABC will record the data and will issue a certificate of compliance
IMPORTANT - Installation, Commissioning, Service & Repair

This appliance must be installed in accordance with the manufacturer’s instructions and the regulations in force. Read the instructions fully before installing or using the appliance.

In GB, this must be carried out by a competent person as stated in the Gas Safety (Installation & Use) Regulations.

Definition of competence: A person who works for a Gas Safe registered company and holding current certificates in the relevant ACS modules, is deemed competent.

In IE, this must be carried out by a competent person as stated in I.S. 813 “Domestic Gas Installations”.

NOTE: The addition of anything that may interfere with the normal operation of the appliance without express written permission from the manufacturer or his agent could invalidate the appliance warranty. In GB this could also infringe the Gas Safety (Installation and Use) Regulations.

Warning - Check the information on the data plate is compatible with local supply conditions.

All Gas Safe registered engineers carry an ID card with their licence number and a photograph. You can check your engineer is registered by telephoning 0800 408 5500 or online at www.gassaferegister.co.uk.

The boiler meets the requirements of Statutory Instrument “The Boiler (Efficiency) Regulations 1993 No. 3083” and is deemed to meet the requirements of Directive 92/42/EEC on the energy efficiency requirements for new hot water boilers fired with liquid or gaseous fuels:-

Type test for purpose of Regulation 5 certified by:
Notified Body 0086.

Product/Production certified by:
Notified Body 0086.

For GB/IE only.

In GB, the installation must be carried out by a Gas Safe Registered Installer. It must be carried out in accordance with the relevant requirements of the:
• Gas Safety (Installation & Use) Regulations.
• The appropriate Building Regulations either The Building Regulations (Scotland), Building Regulations (Northern Ireland).
• The Water Fittings Regulations or Water Byelaws in Scotland.
• The Current I.E.E. Wiring Regulations.

Where no specific instructions are given, reference should be made to the relevant British Standard Code of Practice.

In IE, the installation must be carried out by a competent Person and installed in accordance with the current edition of I.S. 813 ‘Domestic Gas Installations’, the current Building Regulations and reference should be made to the current ETCI rules for electrical installation.

All systems must be thoroughly flushed and treated with inhibitor (see section 6.2).

Codes of Practice, most recent version should be used

In GB the following Codes of Practice apply:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 6891</td>
<td>Gas Installation.</td>
</tr>
<tr>
<td>BS 5546</td>
<td>Installation of hot water supplies for domestic purposes.</td>
</tr>
<tr>
<td>BS EN 12828</td>
<td>Heating systems in buildings.</td>
</tr>
<tr>
<td>BS EN 12831</td>
<td>Heating systems in buildings - calculations of load</td>
</tr>
<tr>
<td>BS EN 14336</td>
<td>Installation & commissioning of water based heating systems.</td>
</tr>
<tr>
<td>BS 6798</td>
<td>Installation of gas fired hot water boilers.</td>
</tr>
<tr>
<td>BS 5440 Part 1</td>
<td>Flues.</td>
</tr>
<tr>
<td>BS 5440 Part 2</td>
<td>Ventilation.</td>
</tr>
<tr>
<td>BS 7074</td>
<td>Expansion vessels and ancillary equipment for sealed water systems.</td>
</tr>
<tr>
<td>BS 7593</td>
<td>Treatment of water in domestic hot water central heating systems.</td>
</tr>
</tbody>
</table>

In IE the following Codes of Practice apply:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.S. 813</td>
<td>Domestic Gas Installations.</td>
</tr>
<tr>
<td>The following BS standards give valuable additional information:</td>
<td></td>
</tr>
<tr>
<td>BS 5546</td>
<td>Installation of hot water supplies for domestic purposes.</td>
</tr>
<tr>
<td>BS EN 12828</td>
<td>Heating systems in buildings.</td>
</tr>
<tr>
<td>BS EN 12831</td>
<td>Heating systems in buildings - calculations of load</td>
</tr>
<tr>
<td>BS EN 14336</td>
<td>Installation & commissioning of water based heating systems.</td>
</tr>
<tr>
<td>BS 7074</td>
<td>Expansion vessels and ancillary equipment for sealed water systems.</td>
</tr>
<tr>
<td>BS 7593</td>
<td>Treatment of water in domestic hot water central heating systems.</td>
</tr>
</tbody>
</table>
General

The following advice should be adhered to, from when first handling the boiler to the final stages of installation, and also during maintenance.

Most injuries as a result of inappropriate handling and lifting are to the back, but all other parts of the body are vulnerable, particularly shoulders, arms and hands. Health & Safety is the responsibility of EVERYONE.

There is no 'safe' limit for one man - each person has different capabilities. The boiler should be handled and lifted by TWO PEOPLE.

Do not handle or lift unless you feel physically able.

Wear appropriate Personal Protection Equipment e.g. protective gloves, safety footwear etc.

Preparation

Co-ordinate movements - know where, and when, you are both going.

Minimise the number of times needed to move the boiler - plan ahead.

Always ensure when handling or lifting the route is clear and unobstructed. If possible avoid steps, wet or slippery surfaces, unlit areas etc. and take special care on ladders/into lofts.

Technique

When handling or lifting always use safe techniques - keep your back straight, bend your knees. Don’t twist - move your feet, avoid bending forwards and sideways and keep the load as close to your body as possible.

Where possible transport the boiler using a sack truck or other suitable trolley.

Always grip the boiler firmly, and before lifting feel where the weight is concentrated to establish the centre of gravity, repositioning yourself as necessary. See section 10.3 of these instructions for recommended lift points.

Remember

The circumstances of each installation are different. Always asses the risks associated with handling and lifting according to the individual conditions.

If at any time when installing the boiler you feel that you may have injured yourself STOP !!

DO NOT ‘work through’ the pain - you may cause further injury.

IF IN ANY DOUBT DO NOT HANDLE OR LIFT THE BOILER - OBTAIN ADVICE OR ASSISTANCE BEFORE PROCEEDING !!
1.1 Description

1. The Potterton Promax SL Heat range are gas fired room sealed fan assisted condensing central heating boilers.

2. The maximum output of the Potterton Promax SL Heat are:
 - 12 - 11.82 kW Pn (Non condensing)
 - 12.81 kW Pnc (Condensing)
 - 15 - 15.24 kW Pn (Non condensing)
 - 16.49 kW Pnc (Condensing)
 - 18 - 17.81 kW Pn (Non condensing)
 - 19.27 kW Pnc (Condensing)
 - 24 - 22.0 kW Pn (Non condensing)
 - 23.8 kW Pnc (Condensing)

All boilers automatically adjust their outputs according to the system load.

3. It is designed for use on Natural Gas (G20).

4. The boiler is suitable for fully pumped open vented central heating and domestic hot water systems and sealed systems.

5. A label giving details of the model, serial number and Gas Council number is situated on the rear of the lower door panel (Fig. 1).

6. The boiler data badge is positioned on the air box door (Fig. 2).

7. The boiler is intended to be installed in residential / domestic environments on a governed meter supply only.

8. The boiler must be installed with one of the purpose designed flues such as the standard horizontal flue kit, part no 236921.

1.2 Important Information

Man-made mineral fibre
- Some component parts of this appliance (insulation pads, gaskets and rope seals) are manufactured from man-made mineral fibre.
- Prolonged or excessive exposure to this material may result in some irritation to the eyes, skin or respiratory tract.
- It is advisable to wear gloves when handling these items.
- Irritant dust will only be released from the items if they are broken up or subjected to severe abrasion. In these instances a suitable dust mask and goggles should be worn.
- Always thoroughly wash hands after installation, servicing or changing components.
- When disposing of any items manufactured from man-made mineral fibre care must be exercised.
- If any irritation of the eyes or severe irritation of the skin is experienced seek medical attention.

1.0 Introduction
2.0 General Layout

2.1 Layout (Figs. 3, 4, 5 & 6)

1. Wall Plate
2. Flue Elbow
3. Heat Exchanger
4. Burner
5. Air Box
6. Fan Protection Thermostat
7. Fan Assembly
8. Condensate Trap
9. PCB Housing Assembly
10. Gas Tap
11. Gas / Air Ratio Valve
12. Flow Pipe Connection
13. Return Pipe Connection
14. Flow Temperature Safety Thermostat - Black
15. Flow Temperature Thermistor - Red
16. Flow Switch (dry fire protection)
17. Air Pressure Switch
3.0 Appliance Operation

3.1 Switched Live On: When the switched live switches on if the flow temperature is less than the set point then pump overrun occurs. When the switched live switches on if the flow temperature is greater than the set point then pump overrun occurs.

2. Pump On: The pump is on while the fan, spark generator and gas valve are off. After 10 seconds if the flow switch has made then fan pre-purge occurs. After 10 seconds if the flow switch has not made then anti-cycle occurs.

3. Fan Pre-Purge: The pump and fan are on while the spark generator and gas valve are off. After 5 seconds ignition occurs.

4. Ignition: The pump, fan, spark generator and gas valve are on. If a flame is detected then burner on occurs. If a flame is not detected within 5 seconds and less than 5 ignition attempts have been made then fan purge occurs. If a flame is not detected within 5 seconds and 5 ignition attempts have been made then ignition lockout occurs.

5. Burner On: The pump, fan and gas valve are on while the spark generator is off. Flow temperature is controlled by varying the fan speed (and thereby the gas rate) to achieve optimum operation. If the flow temperature is greater than the set point or the TRVs all shut down then fan post purge occurs.

6. Fan Post Purge: The pump and fan are on while the spark generator and gas valve are off. After 5 seconds if the TRVs are not shut down then pump overrun occurs. After 5 seconds if the TRVs are shut down then anti-cycle occurs.

7. Pump Overrun: The pump is on while the fan, spark generator and gas valve are off. After 1 minute anti-cycle occurs.

8. Anti-cycle: The pump, fan, spark generator and gas valve are off. After 3 minutes if the flow temperature is less than the set point then pump on occurs. After 3 minutes if the flow temperature is greater than the set point then pump overrun occurs.

9. Ignition Lockout: The pump, fan, spark generator and gas valve are off. The boiler can only be reset by manually using the reset button.
Technical Data

Promax SL 12, 15, 18, 24 Heat ErP

<table>
<thead>
<tr>
<th>Appliance Type</th>
<th>C13</th>
<th>C15</th>
<th>C18</th>
<th>C24</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Appliance Category</th>
<th>CAT I 2H</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Heat Input Qn Hs (Gross)</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 model</td>
<td>kW</td>
<td>13.34</td>
</tr>
<tr>
<td>15 model</td>
<td>kW</td>
<td>16.88</td>
</tr>
<tr>
<td>18 model</td>
<td>kW</td>
<td>20.18</td>
</tr>
<tr>
<td>24 model</td>
<td>kW</td>
<td>24.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat Output Pn (Gross)</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Non Condensing 70°C Mean Water Temp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 model</td>
<td>kW</td>
<td>11.82</td>
</tr>
<tr>
<td>15 model</td>
<td>kW</td>
<td>15.24</td>
</tr>
<tr>
<td>18 model</td>
<td>kW</td>
<td>17.81</td>
</tr>
<tr>
<td>24 model</td>
<td>kW</td>
<td>22.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat Output Pnc (Gross)</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Condensing 40°C Mean Water Temp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 model</td>
<td>kW</td>
<td>12.81</td>
</tr>
<tr>
<td>15 model</td>
<td>kW</td>
<td>16.49</td>
</tr>
<tr>
<td>18 model</td>
<td>kW</td>
<td>19.27</td>
</tr>
<tr>
<td>24 model</td>
<td>kW</td>
<td>23.8</td>
</tr>
</tbody>
</table>

Connections
- Gas Supply: 1/2in BSPT
- Central Heating Flow: 22mm
- Central Heating Return: 22mm
- Condensate Drain: 1 in BSP

Other Dimensions
- Overall Height Inc Flue Elbow: 750mm
- Casing Height: 600mm
- Casing Width: 390mm
- Casing Depth: 280mm

Clearances
- Both Sides: 5mm Min
- Above Casing: 200mm Min
- Below Casing: 50mm Min
- Front (For Servicing): 500mm Min
- Front (In Operation): 5mm Min

Weights
- kg
- Packaged Boiler Carton: 36.2
- Packaged Flue Kit: 3.6
- Installation Lift Weight: 26.0

CO2/CO2 Ratio
- Up to a maximum of 0.004
- 9% ± 1%

Hydraulic Resistance Chart

```
0  20  40  60  80  100  120  140  160  180  200  220
0  20  40  60  80  100  120  140  160  180  200  220
```

Water Content
- litres: 2.6
- pints: 4.6

Low Head
- 0.2m min

Static Head
- max 30 metres
- min 1 metre

Electrical Supply
- 230V~ 50Hz
- (Appliance must be connected to an earthed supply)
- Power Consumption: 80W
- External Fuse Rating: 3A
- Internal Fuse Rating (BS 4265): 3.15 A (PCB)

Electrical Protection
- IPX2

Gas Connection
- G1/2" B.S.P. Thread

Controls
- Boiler thermostats, safety thermostats, flow switch, electronic flame sensing, temperature protection thermostats, air pressure switch & condensate blockage sensors

Inlet Pressure at Gas Valve (Natural Gas)
- Min: 18.1 mbar
- Max: 22.5 mbar

Flow Temperature (adjustable)
- 55°C to 78°C (±5°C)

Recommended System
- Temperature Drop: 20°C
Technical parameters for boiler space heaters

<table>
<thead>
<tr>
<th>Potterton Promax SL Heat ErP</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensing boiler</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Low-temperature boiler(^{(1)})</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B1 boiler</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cogeneration space heater</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Combination heater</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rated heat output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{rated}}) kW</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Useful heat output at rated heat output and high temperature regime (P_a) kW</td>
<td>12.0</td>
<td>15.0</td>
<td>18.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Useful heat output at 30% of rated heat output and low temperature regime (P_I) kW</td>
<td>3.8</td>
<td>4.8</td>
<td>5.9</td>
<td>7.8</td>
</tr>
<tr>
<td>Seasonal space heating energy efficiency (\eta_s) %</td>
<td>91</td>
<td>91</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Useful efficiency at rated heat output and high temperature regime (\eta_d) %</td>
<td>90.3</td>
<td>88.6</td>
<td>90.3</td>
<td>88.3</td>
</tr>
<tr>
<td>Useful efficiency at 30% of rated heat output and low temperature regime (\eta_I) %</td>
<td>96.5</td>
<td>96.5</td>
<td>96.5</td>
<td>96.8</td>
</tr>
<tr>
<td>Auxiliary electricity consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full load (e_{\text{max}}) kW</td>
<td>0.070</td>
<td>0.080</td>
<td>0.110</td>
<td>0.130</td>
</tr>
<tr>
<td>Part load (e_{\text{min}}) kW</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td>Standby mode (P_{\text{SB}}) kW</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other items</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby heat loss (P_{\text{stay}}) kW</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
</tr>
<tr>
<td>Ignition burner power consumption (P_{\text{ign}}) kW</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Annual energy consumption (Q_{\text{HE}}) kWh</td>
<td>10550</td>
<td>13187</td>
<td>15652</td>
<td>20870</td>
</tr>
<tr>
<td>Sound power level, indoors (L_{\text{WA}}) dB</td>
<td>38</td>
<td>46</td>
<td>49</td>
<td>52</td>
</tr>
<tr>
<td>Emissions of nitrogen oxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{NO}_X) (\text{mg/kWh})</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Low temperature means for condensing boilers 30°C, for low temperature boilers 37°C and for other heaters 50°C return temperature (at heater inlet).

\(^{(2)}\) High temperature regime means 60°C return temperature at heater inlet and 80°C feed temperature at heater outlet.

See The back cover for contact details.
5.0 Dimensions and Fixings

DIMENSIONS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>600mm</td>
</tr>
<tr>
<td>B</td>
<td>280mm</td>
</tr>
<tr>
<td>C</td>
<td>390mm</td>
</tr>
<tr>
<td>D</td>
<td>150mm Ø Min.</td>
</tr>
<tr>
<td>E</td>
<td>162.5mm</td>
</tr>
<tr>
<td>F</td>
<td>96mm</td>
</tr>
</tbody>
</table>

The 1.5° fall provided by the elbow is to allow condensate to run back to the boiler, for disposal through the condensate discharge pipe.

SIDE FLUE (left and right)

For every 1m of horizontal flue length, the clearance above the top of the flue elbow should be 27.5mm to incorporate the 1.5° fall in the flue from the terminal to the elbow.

<table>
<thead>
<tr>
<th>Flue length (Y)</th>
<th>Clearance (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 1m</td>
<td>27.5mm</td>
</tr>
<tr>
<td>1m - 2m</td>
<td>55mm</td>
</tr>
<tr>
<td>2m - 3m</td>
<td>82.5mm</td>
</tr>
</tbody>
</table>
6.1 Water Circulating Systems

1. The appliance is suitable for use with open vent fully pumped systems and sealed systems.

The following conditions should be observed on all systems:

• The static head must not exceed 30m of water.
• The boiler must not be used with a direct cylinder.
• Drain cocks should be fitted to all system low points.
• All gas and water pipes and electrical wiring must be installed in a way which would not restrict the servicing of the boiler.
• Position isolating valves as close to circulating pump as possible.
• It is recommended that the return pipe is fitted with an automatic air vent as close to the boiler as is practical.

6.2 Treatment of Water Circulating Systems

• All recirculatory water systems will be subject to corrosion unless an appropriate water treatment is applied. This means that the efficiency of the system will deteriorate as corrosion sludge accumulates within the system, risking damage to pump and valves, boiler noise and circulation problems.
• When fitting new systems flux will be evident within the system, which can lead to damage of system components.
• BS7593 gives extensive recommendations on system cleansing and water treatment.
• All systems must be thoroughly drained and flushed out using an appropriate proprietary flushing agent.
• A suitable inhibitor must then be added to the system.
• All system additives (flushing agents, cleansers, inhibitors etc.) must comply with the requirements of BS7593. Full instructions are supplied with the products and for further information contact the additive manufacturer directly or consult their website.

Failure to flush and add inhibitor to the system will invalidate the appliance warranty.

• It is important to check the inhibitor concentration after installation, system modification and at every service in accordance with the inhibitor manufacturer. (Test kits are available from inhibitor stockists.)
• For information or advice regarding any of the above contact Baxi Customer Support 0344 871 1545.
6.0 System Details

6.3 Pipework

1. The sizes of flow and return pipes from the boiler should be determined by normal methods, according to the requirements of the system. The connections on the boiler are 22mm.

2. A 20 °C drop in temperature across the system is recommended for condensing boilers. Existing radiators may be oversized and so allow this, but where radiator sizing is marginal it may be advisable to retain a system temperature drop of 11°C.

3. In systems using non-metallic pipework it is necessary to use copper pipe for the boiler Flow and Return. The copper must extend at least 1 metre from the boiler and include any branches (Fig. 9).

6.4 Low Head Installation

1. Using a close couple arrangement the minimum head is as shown in the diagrams (Figs. 10 & 11) subject to the following conditions:
 a) The pump being adjusted to give a 20°C drop across the boiler.
 b) The pump must be fitted on the flow.
 c) The pump must be fitted in accordance with the pump manufacturer’s instructions.
 d) The open vent pipe must be taken up from a tee in a horizontal section of the flow pipe.

An alternative Low Head Installation (Fig. 12)

2. For heads below 400mm then a combined vent and feed pipe may be connected. This must be a minimum of 22mm diameter. It is recommended that an air separator is fitted when using a combined feed and vent pipe.

6.5 Pump

1. Providing that the cold feed and open vent pipe are positioned correctly (e.g. the system is not prone to pumping over, air entrainment etc.) the pump may be fitted on the primary return pipe.
6.0 System Details

6.6 System Controls

This boiler does not require a bypass.
This boiler does not require a permanent live.
The pump only needs wiring directly to the boiler for fully TRV’d systems.

1. To comply with Part L1 of the Building Regulations the heating system into which the boiler is installed should include the following:
 a) zone controls
 b) timing controls
 c) boiler control interlocks

2. Such a system needs to be fully pumped and must provide independent temperature and time control to both the heating and hot water circuits and have a boiler interlock.

3. The boiler should be controlled so that it operates on demand only. Where it is proposed to effect control by thermostatic radiator valves, a room thermostat (or other device such as a flow switch - a flow switch is integral to this boiler) should also be provided to switch off the boiler when there is no demand for heating or hot water.

4. The interlock for the CH circuit can be provided by either a Room Thermostat or a fully TRV’d system with the pump wired back to the boiler without a bypass. Connection diagrams for both options for Y and S plan systems are shown.

Key to colours
b - Blue
br - Brown
w - White
o - Orange
gr - Grey
g/y - Green/Yellow

© Baxi Heating UK Ltd 2016
6.0 System Details

6.7 Sealed Systems (Fig. 13)

1. SAFETY VALVE - A safety valve complying with the requirements of BS EN ISO 4126-1 must be fitted close to the boiler on the flow pipe by means of a horizontal or vertically upward connection with no intervening valve or restrictions and should be positioned to facilitate testing. The valve should be pre-set and non-adjustable to operate at a pressure of 3 bar. It must be arranged to discharge any water or steam through a pipe to a safe outlet position.

2. PRESSURE GAUGE - A pressure gauge of minimum range 0-4 bar with a fill pressure indicator must be fitted to the system, preferably at the same point as the expansion vessel in an easily visible position.

3. EXPANSION VESSEL - An expansion vessel complying with the requirements of BS EN 13831 must be fitted to the system by means of a connection close to the inlet side of the circulating pump in accordance with the manufacturers instructions, the connecting pipe being unrestricted and not less than 15mm (1/2 in) nominal size. The volume of the vessel should be suitable for the system water content and the nitrogen or air charge pressure should not be less than the system static head (See Table 1).

Further details of sealed system design can be obtained from BS EN 12828, 12831, 4336 and the British Gas publication entitled 'Specifications for Domestic Wet Central Heating Systems'.

4. FILLING POINT - A filling point connection on the central heating return pipework must be provided to facilitate initial filling and pressurising and also any subsequent water loss replacement / refilling. The sealed primary circuits may be filled or replenished by means of a temporary connection between the primary circuit and a supply pipe provided a 'Listed' double check valve or some other no less effective backflow prevention device is permanently connected at the inlet to the circuit and the temporary connection is removed after use. The filling method adopted must be in accordance with all relevant water supply regulations and use approved equipment.

Your attention is drawn to, for GB: Guidance G24.2 and recommendation R24.2 of the Water Regulations Guide. for IE: the current edition of I.S. 813 "Domestic Gas Installations".

5. MAKE UP SYSTEM - A method of replacing water lost from the system should be provided either by means of a make up vessel of not more than 3 litres capacity, mounted above the highest point of the system, or by re-pressurisation of the system.

6. VENTING - A method of venting the system during filling and commissioning must be provided by fitting automatic air vents or by venting manually.

7. HOT WATER STORAGE - The hot water storage vessel must be of the indirect coil type. All components used in the system must be suitable for operation at 110°C and at the pressure allowed by the safety valve.

Table 1

<table>
<thead>
<tr>
<th>Vessel Charge Pressure (Bar)</th>
<th>Initial System Pressure (Bar)</th>
<th>Multiply Total Water Content Of System By (Litres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.067</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.121</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>0.207</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>0.441</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.087</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>0.152</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>0.330</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>0.125</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>0.265</td>
</tr>
</tbody>
</table>

Example:

System Volume = 75 litres
Vessel Charge Pressure = 1.0 bar
Initial System Pressure = 1.5 bar

Then:

75 x 0.152 = 11.4 litres
Expansion Vessel Volume

NOTE
Where a vessel of the calculated size is not obtainable then the next available larger size should be used.

Fig. 14

Max Boiler Flow
Temp = 82°C
7.0 Site Requirements

7.1 Location

NOTE: Due to the high efficiency of the boiler a plume of water vapour will be discharged from the flue. This should be taken into account when siting the flue terminal.

1. The boiler may be fitted to any suitable wall with the flue passing through an outside wall or roof and discharging to atmosphere in a position permitting satisfactory removal of combustion products and providing an adequate air supply. The boiler should be fitted within the building unless otherwise protected by a suitable enclosure i.e. garage or outhouse. (The boiler may be fitted inside a cupboard - see Section 7.2).

2. If the boiler is sited in an unheated enclosure then it is recommended to incorporate an appropriate device for frost protection in the system controls.

3. If the boiler is fitted in a room containing a bath or shower it **MUST NOT BE** fitted in zone 0, 1 or 2, **ONLY** within the shaded area (Figs. A & B shows zone dimensions for a bathtub. For other examples refer to the Current I.E.E. Wiring Regulations) reference must be made to the relevant requirements.

 In GB this is the current I.E.E. Wiring Regulations and Building Regulations.

 In IE reference should be made to the current edition of I.S. 813 “Domestic Gas Installations” and the current ETCI rules.

4. If the boiler is to be fitted into a building of timber frame construction then reference must be made to the current edition of Institute of Gas Engineers Publication IGE/UP/7 (Gas Installations in Timber Framed Housing).

7.2 Ventilation of Compartments

1. Where the boiler is installed in a cupboard or compartment, no air vents are required for cooling purposes providing that the minimum dimensions below are maintained.

 - Sides: 15mm
 - Top: 200mm
 - Bottom: 50mm
 - Front: 30mm

2. If the boiler is installed in a smaller cupboard or compartment it must be ventilated according to BS 5440 Part 2 and the minimum clearances given in section 4.0 “Technical Data” maintained.

3. Any compartment should be large enough to house the boiler only.

NOTE: The ventilation label on the front of the outer case **MUST NOT BE REMOVED** when the appliance is installed in a compartment or cupboard.
7.0 Site Requirements

7.3 Clearances (Figs. 15 & 16)

1. A flat vertical area is required for the installation of the boiler.

2. These dimensions include the necessary clearances around the boiler for case removal, spanner access and air movement. Additional clearances may be required for the passage of pipes around local obstructions such as joists running parallel to the front face of the boiler.

3. For unventilated compartments see Section 7.2.

7.4 Gas Supply

1. The gas installation should be in accordance with the relevant standards. In GB this is BS 6891. In IE this is the current edition of I.S. 813 “Domestic Gas Installations”.

2. The connection to the appliance is a 1/2in BSPF.

3. Ensure that the pipework from the meter to the appliance is of adequate size to ensure correct operation. Do not use pipes of a smaller diameter than the boiler gas connection.

7.5 Electrical Supply

1. External wiring must be correctly earthed, polarised and in accordance with relevant regulations/rules. In GB this is the current I.E.E. Wiring Regulations. In IE reference should be made to the current edition of ETCI rules.

2. The mains supply is 230V – 50Hz fused at 3A.

NOTE: “The method of connection to the electricity supply must facilitate complete electrical isolation of the appliance”.

Note! There is no method of isolating the boiler, at the user interface.

Connection may be via a fused double-pole isolator with a contact separation of at least 3mm in all poles and servicing the boiler and system controls only.

WARNING: The PCB Control and Fan Assembly are 325 Vdc. Isolate at supply before access.
7.0 Site Requirements

7.6 Condensate Drain

FAILURE TO INSTALL THE CONDENSATE DISCHARGE PIPEWORK CORRECTLY WILL AFFECT THE RELIABLE OPERATION OF THE BOILER.

CAREFUL CONSIDERATION MUST BE GIVEN TO THE POSSIBILITY OF THE PIPEWORK BEING SUBJECT TO FREEZING CONDITIONS AND APPROPRIATE MEASURES TAKEN TO PREVENT BLOCKAGE. CORRECT INSTALLATION IN ACCORDANCE WITH THIS SECTION WILL CONSIDERABLY MINIMISE THE LIKELIHOOD OF BLOCKAGE AND SUBSEQUENT BOILER LOCK-OUT.

A CONDENSATE DISCHARGE PUMP AND PIPE ‘TRACE HEATING’ ARE AVAILABLE AS ACCESSORIES - see paragraphs 7.7.12 to 7.7.15 for further details.

The condensate discharge pipe MUST NOT RISE at any point along its length. There MUST be a fall of AT LEAST 2.5° (50mm per metre) along the entire run EXCEPT when employing a suitable condensate pump in basement and cellar or similar applications.

The boiler condensate trap incorporates a seal of 75mm, therefore it is unnecessary to install an air break and trap in the discharge pipework.

1. The condensate outlet will accept 21.5mm (3/4 in) plastic overflow pipe. It is strongly recommended that this discharges internally into the household drainage system. Where this is not possible, discharge into an outside drain is permissible providing every possible precaution is taken to prevent freezing.

2. Ensure the discharge of condensate complies with any national or local regulations in force. BS 6798 & Part H1 of the Building Regulations give further detailed guidance.

3. The discharge pipe should be run in a proprietary drain pipe material e.g. PVC, PVC-U, ABS, PVC-C or PP.

4. Metal pipework is NOT suitable for use in condensate discharge systems.

5. The pipe should be a minimum of 21.5mm diameter and must be supported using suitably spaced clips of the correct design to prevent sagging.

6. It is advisable that the full length of condensate pipe is run internally and preferably be less than 3 metres.

7. Internal runs greater than 3 metres or runs in cold areas should use 32mm waste pipe.

8. External runs MUST be a MINIMUM of 32mm and fully insulated with material suitable for external use.

9. If the boiler is fitted in an unheated location the entire condensate discharge pipe should be treated as an external run and sized and insulated accordingly.

10. In all cases discharge pipe must be installed to aid disposal of the condensate. To reduce the risk of condensate being trapped, as few bends and fittings as possible should be used and any burns on cut pipe removed.
7.0 Site Requirement

7.6 Condensate Drain (cont.)

11. When discharging condensate into a soil stack or waste pipe the effects of existing plumbing must be considered. If soil pipes or waste pipes are subjected to internal pressure fluctuations when WC’s are flushed or sinks emptied then back-pressure may force water out of the boiler trap and cause appliance lockout.
12. A boiler discharge pump is available, ‘MULTIFIT’ part no. 720648301. This pump will dispose of both condensate & high temperature water from the relief valve. It has a maximum head of 3 metres. Follow the instructions supplied with the pump.

13. Condensate Drain Pipe ‘Trace Heating’ Elements are available in various lengths. ‘MULTIFIT’ part nos.:
 - 1 metre: 720644401
 - 2 metre: 720664101
 - 3 metre: 720664201
 - 5 metre: 720664401*

*Where the drain is between 3 & 5 metres a 5 metre kit can be used and “doubled back” upon itself.

14. It is possible to fit the element externally on the condensate drain or internally as detailed in the instructions provided.

15. The fitting of a ‘Trace Heating’ Element is NOT a substitute for correct installation of the condensate drain. ALL requirements in this section must still be adhered to.
7.0 Site Requirements

7.7 Flue

NOTE: Due to the high efficiency of the boiler a plume of water vapour will be discharged from the flue. This should be taken into account when siting the flue terminal.

1. The following guidelines indicate the general requirements for siting balanced flue terminals. For GB recommendations are given in BS 5440 Pt.1. For IE recommendations are given in the current edition of I.S. 813 "Domestic Gas Installations".

2. If the terminal discharges onto a pathway or passageway, check that combustion products will not cause a nuisance and that the terminal will not obstruct the passageway.

3. Take into consideration the effect the plume of vapour may have on neighbours when siting the flue.

4. Adjacent surfaces close to the flue terminal may need protection from the effects of condensation. Alternatively a flue deflector kit (part no. 248167) is available.

5. For installation of the flue into an internal corner at the 25mm dimension the flue deflector kit (part no. 248167) must be fitted.

6. * Reduction to the boundary is possible down to 25mm but the Flue Deflector Kit (part no. 248167) must be fitted.

7. If required a suitable terminal guard is available for use with the flue deflector.

8. For fitting under low soffits and eaves the Plume Displacement Kit or Flue Deflector Kit is recommended.

9. If a terminal is less than 2 metres (78 3/4 in) above a balcony, above ground or above a flat roof to which people have access, then a suitable terminal guard must be provided.

IMPORTANT:

- Under car ports we recommend the use of the plume displacement kit.
- The terminal position must ensure the safe and nuisance-free dispersal of combustion products.

![Fig. 17a](image1)

NOTE: The distance from a fanned draught appliance terminal installed parallel to a boundary may not be less than 300mm in accordance with the diagram below.

![Fig. 17](image2)

IMPORTANT:

- If fitting a Plume Displacement Flue Kit, the air inlet must be a minimum of 150mm from any opening windows or doors (see Section 9.0).
8.0 Flue Options

8.1 Horizontal Flue Systems

Concentric

The maximum equivalent lengths are 4m (horizontal) or (vertical). Their lengths exclude the standard elbow and flue/terminal assembly (horizontal) and terminal assembly (vertical).

Any additional “in line” bends in the flue system must be taken into consideration. Their equivalent lengths are:

- Concentric Pipes:
 - 45° bend: 0.5 m
 - 93° bend: 1.0 m

NOTE: Flue length is measured from point X to Y as shown.

IMPORTANT: All flue systems must be securely supported at least once every metre. Suitable pipe supports are available as accessories.

Plume Displacement 70/110 dia Kit

1M Extensions, 45° & 93° bends are also available - see Section 9.0

NOTE: Horizontal flue pipes should always be installed with a 1.5° fall from the terminal to allow condensate to run back to the boiler.

Horizontal Flue System Examples

Total equivalent length (up to 4m) = A + B + 2 x 45° Bends
8.2 Twin & Vertical Flue Systems

Concentric
The maximum equivalent lengths are 4m (vertical). Their lengths exclude the standard elbow and terminal assembly (vertical).

Twin Flue
The total maximum equivalent flue length is 150m.

NOTE: Each 1m of flue duct should be calculated as 2m.

Any additional “in line” bends in the flue system must be taken into consideration. Their equivalent lengths are:

- **Concentric Pipes:**
 - 135° bend: 0.5 m
 - 93° bend: 1.0 m

- **Twin Flue Pipe:**
 - 135° bend (air duct): 1.3 m
 - 135° bend (flue duct): 2.6 m
 - 90° bend (air duct): 4.8 m
 - 90° bend (flue duct): 9.6 m

IMPORTANT: All flue systems must be securely supported at least once every metre. Suitable pipe supports are available as accessories.

Vertical Flue System Examples

Twin & Vertical Flue System Examples

Total Equivalent Length = A+B+C+1x90°Bend

All vertical and angled runs must be included, measured from the boiler adaptor (point X) to the joint with the flue terminal (point Y). One 91.5° bend or two 135° bends can be included without reduction of the flue length.

If further elbows are required the flue length must be reduced by the following amounts:

- 1 metre for each 91.5° bend
- 0.5 metre for each 135° bend

AIR DUCT

<table>
<thead>
<tr>
<th>Equivalent Length Value</th>
<th>N of fittings/pipes</th>
<th>Sub total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1m</td>
<td>1</td>
<td>5.0m</td>
</tr>
<tr>
<td>1.3m</td>
<td>2</td>
<td>2.6m</td>
</tr>
<tr>
<td>4.8m</td>
<td>2</td>
<td>9.6m</td>
</tr>
</tbody>
</table>

Equivalent Length Air Duct = **17.2m**

FLUE DUCT

<table>
<thead>
<tr>
<th>Equivalent Length Value</th>
<th>N of fittings/pipes</th>
<th>Sub total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2m</td>
<td>5</td>
<td>10.0m</td>
</tr>
<tr>
<td>2.6m</td>
<td>2</td>
<td>5.2m</td>
</tr>
<tr>
<td>9.6m</td>
<td>2</td>
<td>19.2m</td>
</tr>
</tbody>
</table>

Equivalent Length Flue Duct = **34.4m**

The total equivalent length for this example is 17.2 + 34.4 = 51.6 metres.
8.3 Flue Accessories

<table>
<thead>
<tr>
<th>Key</th>
<th>Accessory</th>
<th>Size</th>
<th>Code No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Horizontal Flue Terminal</td>
<td>850mm</td>
<td>243013BAX</td>
</tr>
<tr>
<td>A1</td>
<td>Horizontal Flue Terminal (incl elbow)</td>
<td></td>
<td>236921</td>
</tr>
<tr>
<td>B</td>
<td>Flue Extension</td>
<td>1000mm</td>
<td>241695</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500mm</td>
<td>241694</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250mm</td>
<td>241692</td>
</tr>
<tr>
<td>C</td>
<td>Flue Bend</td>
<td>93°</td>
<td>241687</td>
</tr>
<tr>
<td>D</td>
<td>Flue Bend (pair)</td>
<td>135°</td>
<td>241689</td>
</tr>
<tr>
<td>U</td>
<td>Pipe Support</td>
<td>110mm</td>
<td>243014BAX</td>
</tr>
<tr>
<td>T</td>
<td>Vertical Flue Boiler Adaptor</td>
<td></td>
<td>5106888</td>
</tr>
<tr>
<td>S</td>
<td>Flue Terminal Deflector</td>
<td></td>
<td>248167</td>
</tr>
<tr>
<td>E</td>
<td>Flue Extension</td>
<td>1000mm</td>
<td>246137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500mm</td>
<td>246136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250mm</td>
<td>246135</td>
</tr>
<tr>
<td>F</td>
<td>Flue Bend (pair)</td>
<td>90°</td>
<td>5121560</td>
</tr>
<tr>
<td>G</td>
<td>Flue Bend (2 pair)</td>
<td>135°</td>
<td>5121561</td>
</tr>
<tr>
<td>J</td>
<td>Vertical Flue Boiler Adaptor Kit</td>
<td></td>
<td>242757</td>
</tr>
<tr>
<td>W</td>
<td>Pipe Support (pair)</td>
<td>80mm</td>
<td>5111081</td>
</tr>
<tr>
<td>K</td>
<td>Vertical Flue Terminal</td>
<td></td>
<td>242802</td>
</tr>
<tr>
<td>L</td>
<td>Pitched Roof Flashing</td>
<td>25°/50°</td>
<td>243015</td>
</tr>
<tr>
<td>M</td>
<td>Roof Cover Plate</td>
<td></td>
<td>243131</td>
</tr>
<tr>
<td>N</td>
<td>Flat Roof Flashing</td>
<td></td>
<td>243016BAX</td>
</tr>
</tbody>
</table>
8.0 Flue Options

8.4 For Vertical Flue Systems

1. Undo the screws securing the blanking plate to the boiler top panel. Discard the plate.

2. Fix the vertical adaptor and gasket to the top panel with the previously removed screws.

8.5 For Twin Flue Systems

1. Undo the screws securing the blanking plate to the boiler top panel. Discard the plate.

2. Fix both the air and flue adaptors with their gaskets onto the boiler top panel. Secure with screws.
8.0 Flue Options

8.6 For Roof Terminals

1. In the case of a pitched roof 25 - 50 degrees, position the lead tile to replace/flash over existing roof tiling. Make an aperture in the roof suitable for the lower tube of the roof terminal and ensure the integrity of the roof cover is maintained. The adjustable plastic collar can either be positioned on the lead tile or the lower tube of the roof terminal prior to the final positioning of the vertical flue through the tile. Check the collar is correctly located to suit required roof pitch (either 25° to 38° or 37° to 50°). From inside the roof adjust the flue to a vertical position and secure to the roof structure with the clamp supplied.

2. For flat roof installations the aluminium flashing must be incorporated into the roof covering and the appropriate aperture made in the roof decking. The vertical flue is lowered onto the flashing making sure the collar of the flue locates securely with the flashing. (A mastic seal may be necessary). From inside the roof, adjust the flue to a vertical position and secure to the roof structure with the clamp supplied.

IMPORTANT: If the boiler is not fitted immediately after the flue system, temporary precautions must be taken to prevent rain entry into the room of installation. Any precautionary measures must be removed prior to commissioning the boiler.

8.7 Flue Dimensions

The standard horizontal flue kit allows for flue lengths between 270mm (10½") and 800mm (32") from elbow to terminal (Fig. 18).

The maximum permissible equivalent flue length is: 4 metres.

NOTE: Each additional 45° of flue bend will account for an equivalent flue length of 0.5m.

\[45° = 0.5m, \quad 90° = 2 \times 45° = 1m \text{ etc.} \]

8.8 Terminal Guard (Fig. 19)

1. When codes of practice dictate the use of terminal guards, they can be obtained from most Plumbers’ and Builders’ Merchants.

2. When ordering a terminal guard, quote the appliance model number.

3. The flue terminal guard should be positioned centrally over the terminal and fixed as illustrated.

8.9 Flue Deflector (Fig. 18a)

1. If required, a flue deflector is available from your Potterton stockist.

2. Push the flue deflector over the terminal end. It may point upwards as shown, or up to 45° either way from vertical. Secure the deflector to the terminal with screws provided.
9.0 Plume Displacement

9.1 Plume Displacement Kit (P.D.K.)

Kit No 5121371

Content of kit

1. 70/110 Concentric Flue
2. 1m 70 Dia Exhaust Flue Pipe
3. Support Brackets
4. 93° Elbow/Plume Outlet Assembly
5. Flue Trim
6. “O” Rings
7. Elbow with Gasket

1. This kit is recommended for installations where the condensate plume emitted from the flue may cause a nuisance or affect the surroundings.

2. The terminal must be positioned outside the building with the outlet connection upwards.

3. The 70Ø pipe connects to the outlet of the concentric terminal assembly. The elbow/plume outlet must be fitted to the end of the 70Ø pipe.

NOTE: The plume outlet must always be at least 45° to the wall, with the ‘peak’ uppermost to prevent rain entry (Figs. A & B), and be at least 2 metres above ground level. It must be secured as shown in Fig. C.

The outlet must be positioned so that any condensate plume is directed away from adjacent surfaces.

4. It is possible to reduce or increase (with the addition of extensions) the length of either or both the 70/110 concentric and 70Ø exhaust.

5. Standard concentric flue extension kits may be added between the boiler elbow and the terminal assembly.

6. The minimum length of the concentric flue is 100mm when measured from the edge of the boiler flue elbow. There is a further 45mm engagement into the elbow.

IMPORTANT: The maximum equivalent length of concentric flue is: 4 metres

Additional elbows may be fitted in the concentric flue, but the equivalent length must be reduced by 1 metre (93° elbow) or 0.5 metres (45° elbow).

7. 70Ø 1 metre extensions (including support bracket), and additional 93° & 45° elbows are available. Any additional 93° & 45° elbows must be accounted for when calculating flue lengths. 70Ø 93° elbows are equivalent to 3.5 metres of straight length and 45° elbows to 1 metre.

NOTE: Permitted positions of the plume outlet relative to doors, windows etc. are the same as for conventional concentric flues as detailed in the main Installation & Servicing Instructions and BS5440 Pt. 1. It is **NOT** necessary to fit a terminal guard over the air inlet or the plume outlet.
9.0 Plume Displacement

9.2 Determining Permissible Lengths - P.D.K.

In the graph the solid line diagonal represents the relationship between the concentric flue assembly (and any extensions) and the 70Ø exhaust (and any extensions or additional bends).

Example 1 - Not Permissible
If, for instance, a concentric length of 3.25 metres was required and the 70Ø exhaust needed to be 10 metres the graph shows that this combination would NOT be permissible as the intersection point would be above the solid diagonal line.

Example 2 - Flue Lengths OK
Where both lengths have been determined they can be applied to the graph to check that the installation is permissible. For example, if it was known that 2 metres of concentric flue and 4 metres of 70Ø exhaust were required, the values could be applied to the graph as shown in Example 2. As the point of intersection of the dotted lines is below the solid diagonal line, the combination of lengths is shown to be acceptable.

Example 3 - Flue Lengths OK
In the example shown, assume that the concentric part of the flue needs to be 2 metres long. Find the position of ‘2’ on the horizontal axis of the graph and then project upwards to the solid diagonal line. This is represented by the vertical thick dotted line. Where this dotted line intersects with the solid diagonal line on the graph, project across to the vertical axis. As can be seen this corresponds with 14 metres. Therefore, the total equivalent length of the 70Ø exhaust can be up to 14 metres. Any elbow equivalencies must be accounted for i.e. 93° elbows are equal to 1 metre, each 45° elbow to 0.5 metres.

Flue Length - Worked Example
Potterton Promax SL Heat

In Fig. D opposite an additional 93° elbow and pair of 45° elbows have been included in the 70Ø exhaust. Also 3 straight extension pieces have been used.

To calculate total length:-

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of 70Ø supplied in kit</td>
<td>1 metre</td>
</tr>
<tr>
<td>3 x 1 metre Extensions</td>
<td>3 metres</td>
</tr>
<tr>
<td>1 x 93° Elbow</td>
<td>1 metre</td>
</tr>
<tr>
<td>2 x 45° Elbow</td>
<td>1 metre (0.5 metres each)</td>
</tr>
<tr>
<td>Total 70Ø</td>
<td>6 metres</td>
</tr>
</tbody>
</table>

After consulting the table in Example 3 it can be determined that the concentric flue could be up to approximately 3.25 metres long.
1. Cut a hole in the external wall which the horizontal concentric flue assembly will pass through.

2. When completed the terminal must be at least 2 metres above ground level (Fig. E).

3. Measure and cut to size the concentric assembly and any extensions that are being used.

4. Insert the concentric assembly through the hole from outside the building and mark the position of the flue trim securing holes.

5. Drill and plug the wall to accept the flue trim securing screws, and re-insert the concentric assembly through the wall.

6. Connect any extensions that are being used to the concentric assembly. Engage the extension or concentric assembly in the boiler flue elbow.

7. Fit the boiler flue elbow to the boiler top panel, ensuring the gasket is in place (Fig. F).

Ensure that the concentric assembly is horizontal and that the external air inlet is to the bottom. Any extensions should fall back to the boiler.

8. Use suitable brackets to support the concentric assembly and any extensions, and make good inside and outside. Secure the flue trim to the wall.

9. The 70Ø exhaust can now be fitted to the spigot at the terminal end.

10. If it is necessary to shorten the 70Ø exhaust or any of the extensions, the excess material must be cut from the plain end of the pipe.

11. Determine the position of the 70Ø exhaust and mark on the wall a suitable position for the support bracket. Drill and plug the wall. If extensions are being used, a support bracket is supplied in each kit.

12. Engage the M6 threaded part of the mounting bolt in the boss on the support bracket. Using the bracket for leverage, screw the mounting bolt into the plugged hole until the bracket is secure and level (Fig. G).

13. Slacken the two screws securing the retaining strap to the bracket, and pivot the strap aside to allow fitting the 70Ø exhaust.

14. Complete the installation of the 70Ø exhaust, securing in the brackets. Fit the 93° elbow and plume outlet. Ensure the plume outlet is at least 45° to the wall and that the ‘peak’ is uppermost.

15. Continue with installation and commissioning of the boiler.
9.0 Plume Displacement

9.3 General Fitting Notes - P.D.K. (cont.)

16. For aesthetic purposes it is permissible to route the 70Ø exhaust in an enclosed box, but the air inlet and plume outlet MUST remain in free air.

17. It is also possible to separate the plume outlet from the 93° elbow to allow the flue to be installed as shown in Fig. H.

18. When the plume outlet is positioned under a balcony or other projection (Figs. I & J) it must protrude at least 200mm (it is not necessary to extend it further than this).
10.0 Installation

Check Site Requirements (Section 7.0) before commencing.

10.1 Initial Preparation

The gas supply, gas type and pressure must be checked for suitability before connection (see Section 7.4).

1. Cut the banding and remove the fixing template, wall plate and literature pack (Fig. 19a) from the carton.

2. After considering the site requirements (see Section 7.0) position the template on the wall ensuring it is level both horizontally and vertically.

NOTE: When fitting Plume Displacement Kit refer to the instructions supplied for details of installation of the flue.

3. Mark the position of the fixing holes for the wall plate (Fig. 20).

4. Mark the centre of the flue hole (rear exit).

 For side exit: project the horizontal side flue centre line into the corner of the room and along the wall to where the flue hole will be drilled. (Fig. 20).

 The diagram (Fig. 21) shows the dimensions required to ensure any horizontal flue is installed with the correct fall to the boiler. Mark the offset (V) dimension and if required, mark the position of the gas and water pipes. Remove the template.

5. Cut the hole for the flue (minimum diameter 127mm, see table (Fig. 20) for wall thicknesses and flue diameters).

6. Drill and plug the wall as previously marked. Secure the wall plate (Fig. 22).

7. Ensuring the wall plate is level both horizontally and vertically, drill and plug at least 5 securing positions at the top and bottom through the wall plate. Utilising the slots available ensure the wall plate is square and secure to the wall (Fig. 22).

8. Additionally drill 2 relief holes 10mm deep in the wall as shown on template (Fig. 22).

8. Loosely route the condensate discharge pipe to the lower left hand side of the wall plate.
10.0 Installation

10.2 Preparing The Boiler

1. Remove the outer carton and packaging.

2. Lift the outercase upwards and remove.

3. Remove the internal packaging.
10.3 Fitting The Boiler (Fig. 24)

1. Obtain retaining bracket and two M6 nuts from fitting bag.

2. Offer up the boiler to the wall plate using the lifting points shown in Fig. 24 and locate the rear bottom edge onto the self locating support at the base of the wall plate. (See Safe Manual Handling page 5.)

NOTE: When installing in a Loft/Small Compartment, access for lifting the boiler from the front can be gained for two people using the lifting points. (Fig. 24).

3. Rotate the boiler up to wall plate and engage retaining bracket, securing with the two nuts.

4. Ensure the boiler is secured with the retaining bracket.

5. Remove red pipe protection caps from the FLOW and RETURN connections.

10.4 Making the Water Connections (Fig. 25)

1. The boiler has two side water connections which are labelled FLOW and RETURN. The front connection is the flow pipe and the rear threaded connection is the return.

2. It is essential that the flow and return pipes are connected to the boiler correctly. The flow connection incorporates the boiler thermostats and a flow switch.

3. The boiler connections will accept 22mm fittings.

4. If the installation requires that the system pipework originates from the bottom of the boiler, then the flow and return pipes will need cutting, as they terminate upwards.

10.5 Making the Condensate Drain Connection

1. Connect the condensate drain using the 1”BSP nut and seal supplied. (see section 7.6).

NOTE: To ensure the correct operation and integrity of the condensate drainage system - Carefully pour approximately 1 cupful (250ml) of water into the flue products exhaust, at the top of the heat exchanger (Fig. 25a) to ensure a seal is made in the trap.
10.0 Installation

10.6 Making the Gas Connection

1. Connect the gas supply to the G1/2 (1/2in BSPT Internal) gas tap. This is located on the lower right side of the boiler; access by hinging down the PCB housing (see Fig. 32).

10.7 Fitting The Flue

Before fitting the flue, check the condensate drain integrity (see section 10.5).

IMPORTANT: The flue should always be installed with at least 1.5° fall from terminal to elbow, to allow condensate to run back to the boiler.

HORIZONTAL FLUE

1. The standard flue is suitable for lengths 270mm minimum to 800mm maximum (measured from the edge of the flue elbow outlet).

2. **For rear exit** - measure the wall thickness (Fig. 26) and to this dimension add 181mm. This dimension to be known as (X).

 \[(X) = \text{wall thickness} + 181 \]

3. Take the flue and mark off (X) from the terminal end as indicated in the diagram (Fig. 27). Check your dimensions.

 The flue tubes are fixed together. Cut through both tubes whilst resting the flue on the semi-circular packing pieces. Deburr both tube ends.

4. **For side exit** - measure the distance from the edge of the wall plate to the inner face of the wall (Fig. 26) and to this dimension add the wall thickness + 250mm. This dimension to be known as (Z).

 \[(Z) = \text{wall plate to wall} + \text{wall thickness} + 250 \]

5. Take the flue and mark off (Z) from the terminal end as indicated (Fig. 27). Check your dimensions.

 The flue tubes are fixed together. Cut through both tubes whilst resting the flue on the semi-circular packing pieces. Deburr both tube ends.

IMPORTANT: Check all measurements before cutting.

NOTE: When cutting ensure the cut does not interfere with the inner flue support bracket (Fig. 27a).
10.7 Fitting the Flue (Cont)

6. Ensure the inner flue support bracket is positioned in the flue (Fig. 28).

7. Engage the flue into the flue elbow using soap solution to ease the engagement ensuring the flue is assembled as shown (Fig. 29). Rear flue only:- Take the tape supplied in the kit and wrap around the joint between the flue and the elbow (Fig. 29a).

8. Place the gasket over the flue exit on the boiler.

9. Slide the flue assembly through the hole in the wall.

10. Engage the elbow on to the flue connection on top of the boiler. Secure with the four screws supplied in the kit.

11. Make good between the wall and air duct outside the building ensuring the 1.5° drop between the terminal and elbow.

12. The flue trim should be fitted once the installation is complete and the flue secure (Fig. 30). Apply a suitable mastic to the inside of the trim and press against the wall finish, making sure the brickwork is dust free and dry.

13. If necessary fit a terminal guard (see Section 8.8).

VERTICAL FLUEING

1. Only a flue approved with the Potterton Promax SL Heat range can be used.
10.8 Making The Electrical Connections

WARNING: This appliance must be earthed

1. The electrical connections are on the right hand side of the unit.

2. Undo the two screws securing the cable clamp and place to one side (Fig. 31).

3. Route the incoming electrical cable/s through the grommet in the support bracket. This will prevent damage to the cable.

4. Lay the cable through the cable clamp to gauge the length of cable required when it is connected to the 4-way terminal block.

5. Connect the (S/L), (N) and (P/F) wires to the 4-way terminal block (Fig. 32) and refit the cable clamp (Fig. 31).

6. Check the electrical installation for; earth continuity, short circuits, resistance to earth, correct polarity and fuse failure.

Fig. 31

Cable Clamp

Fig. 32

4-way Terminal Block

Optional Pump Feed Connection

only required for fully TRV’d system
11.0 Electrical

11.1 Schematic Wiring Diagram

Key To Wiring Colours

- b - Blue
- bk - Black
- w - White
- br - Brown
- gy - Grey
- r - Red
- g - Green
- g/y - Green/Yellow
- op - Opaque
- y - Yellow
11.0 Electrical

11.2 Illustrated Wiring Diagram

Wiring Key

b - Blue
bk - Black
br - Brown
r - Red
w - White
g/y - Green/Yellow
g - Green
gy - Grey
op - Opaque
y - Yellow
12.1 Commissioning the Boiler

WARNING: The PCB Control and Fan Assembly are 325 Vdc. Isolate at supply before access.

1. Reference should be made to BS EN 12828 & 14336 when commissioning the boiler.

2. At the time of commissioning, complete all relevant sections of the Benchmark Checklist at the rear of this publications.

3. Flush the whole system using a suitable flushing agent (see Section 6.2) and vent the radiators. Check for water leaks.

4. Refill the system with inhibitor following the inhibitor manufacturer’s instructions and BS 7593 Code of Practice for Treatment of Water in Domestic Hot Water Central Heating Systems (see Section 6.2).

5. Complete the label supplied with the inhibitor and attach to the inside of the boiler case. Detail of system treatment should be added for future reference.

6. Turn the gas supply on and purge according to GB BS 6891 and in IE I.S. 813 “Domestic Gas Installations”.

7. Remove the top RH securing screw and hinge down the PCB housing to gain access to the gas service cock (see Fig. 33). Turn the gas service cock anticlockwise to the ON position and check for gas tightness up to the gas valve (Fig. 34).

NOTE: The boiler is self-regulating dependent upon the system load. **No adjustment of the gas valve is permissible.**

IMPORTANT: The combustion for this appliance has been checked, adjusted and preset at the factory for operation on the gas type specified on the appliance data plate. No measurement of the combustion is necessary. Do not adjust the air/gas ratio valve.

8. Having checked:
 - That the boiler has been installed in accordance with these instructions.
 - The integrity of the flue system and the flue seals.
 - The integrity of the boiler combustion circuit and the relevant seals.

Proceed to put the boiler into operation as follows:
12.0 Commissioning the Boiler

12.2 Checking the Combustion

1. Follow the flow chart opposite.

Perform Flue Integrity Visual Check
Examine all flue joints for soundness and ensure the system is adequately supported.

Is flue system OK?
Set Boiler to Maximum Rate*
Allow the combustion to stabilise. Do not insert probe to avoid ‘flooding’ the analyser.

Yes

No

Rectify all faults
If necessary call 0344 871 1545 for advice. The appliance MUST NOT be commissioned until all problems are resolved.

Check CO & Combustion Ratio at Maximum Rate
Whilst the boiler is still operating at maximum insert the analyser probe into the flue gas test point, allowing the reading to stabilise.

Is CO < 350 ppm and CO/CO₂ ratio < 0.004?

Yes

No

Verify Integrity of Seals
Check all burner seals, internal flue seals, door & case seals. Replace any seals that appear unsound.

Is CO < 350 ppm and CO/CO₂ ratio < 0.004?

Yes

No

Set Boiler to operating at a low rate. If it is not possible to adjust the boiler to run at minimum rate using the boiler controls, the system must be set such that the boiler will modulate to as low an input as possible without the burner extinguishing (e.g. by closing radiator valves) Allow the combustion to stabilise. Do not insert probe to avoid ‘flooding’ the analyser. The gas rate must be checked & recorded whilst the boiler is operating in this condition.

Is CO < 350 ppm and CO/CO₂ ratio < 0.004?

Yes

No

BOILER OPERATING SATISFACTORILY. NO FURTHER ACTION REQUIRED
Ensure test points are capped, the boiler case front panel is correctly fitted & secured and all other commissioning procedures completed. Complete the ‘Benchmark’ Checklist, recording the CO & combustion ratio readings as required.

*To operate at Maximum Rate
Ensure all external controls are calling for heat, that the system is cold and the boiler control knob is turned fully clockwise.

TURN APPLIANCE OFF!
Call 0344 871 1545 for advice. The appliance MUST NOT be commissioned until all problems are identified and resolved.

If commissioning cannot be fully completed the appliance must be disconnected from the gas supply in accordance with the GSIUR.

Note: Check & record the CO & combustion ratio at both maximum & a low rate before calling 0344 871 1545.
12.0 Commissioning the Boiler

12.3 Check the Operational (Working) Gas Inlet Pressure

1. Ensure that all controls are calling for heat and maximum load is applied to the system.

2. With the boiler operating in the maximum rate condition check that the operational (working) gas pressure at the inlet gas pressure test point is in accordance with B.S. 6798 & B.S. 6891.

3. Ensure that this inlet pressure can be obtained with all other gas appliances in the property working.

Measure the Gas Rate

4. With any other appliances & pilot lights turned OFF the gas rate can be measured. It should be as shown in Section 4.0 Technical Data.

5. Carefully read and complete all sections of the Benchmark Commissioning Checklist at the rear of this publication that are relevant to the boiler and installation. These details will be required in the event of any warranty work. The publication must be handed to the user for safe keeping and each subsequent regular service visit recorded.

6. For I.E, it is necessary to complete a “Declaration of Conformity” to indicate compliance with I.S. 813. An example of this is given in I.S. 813 “Domestic Gas Installations”. This is in addition to the Benchmark Commissioning Checklist.
13.0 Fitting the Outer Case

13.1 Fitting The Outer Case

1. Position the outhercase over the boiler engaging the lugs in the side flanges over the hooks on the wall plate. Break off top or bottom panel as required to accommodate pipework runs (Fig.37).

2. Using the two screws supplied in the kit, secure the outhercase to the combustion box (Fig. 37).

3. Hinge up the lower door panel (Fig. 38).

4. The “Important Ventilation Information” label can be removed unless the appliance is installed in an unventilated compartment.

5. Carefully read and complete all sections of the Benchmark Commissioning Checklist at the rear of this publication that are relevant to the appliance and installation. These details may be required in the event of any warranty work. The publication must be handed to the user for safe keeping and each subsequent regular service visit recorded.

 For IE, it is necessary to complete a “Declaration of Conformity” to indicate compliance to I.S. 813. An example of this is given in I.S. 813 “Domestic Gas Installations". This is in addition to the Benchmark Commissioning Checklist.

6. Instruct the user in the operation of the boiler controls. Hand over the User’s Operating, Installation and Servicing Instructions, giving advice on the necessity of regular servicing.

7. Demonstrate to the user the action required if a gas leak occurs or is suspected. Show them how to turn off the gas supply at the meter control, and advise them not to operate electric light or power switched, and to ventilate the property.

8. Show the user the location of the system control isolation switch, and demonstrate its operation.

9. Advise the user that they may observe a plume of vapour from the flue terminal, and that it is part of the normal operation of the boiler.

10. Complete the label supplied with the inhibitor and stick to the inside of the boiler case. Detail of system treatment must be recorded in the Benchmark Commissioning Checklist.
14.0 Servicing the Boiler

14.1 Annual Servicing

1. For reasons of safety and economy, it is recommended that the boiler is serviced annually. Servicing must be performed by a competent person in accordance with B.S. 7967-4.

2. After servicing, complete the relevant Service Interval Record section of the Benchmark Commissioning Checklist at the rear of this publication.

IMPORTANT: During routine servicing, and after any maintenance or change of part of the combustion circuit, the following must be checked:

- The integrity of the complete flue system and the flue seals.
- The integrity of the boiler combustion circuit and relevant seals as described in Section 14.2.
- The operational gas inlet pressure as described in Section 12.3.1 to 12.3.3 and the gas rate as described in 12.3.4.
- The combustion performance as described in ‘Check the Combustion Performance’ (14.1.4 to 14.1.6 below).

3. Competence to carry out Checking Combustion Performance

B.S. 6798 ‘Specification for Installation & Maintenance of Gas Fired Boilers not exceeding 70kW’ advises that:

- The person carrying out a combustion measurement should have been assessed as competent in the use of a flue gas analyser and the interpretation of the results.
- The flue gas analyser used should be one meeting the requirements of BS7927 or BS-EN50379-3 and be calibrated in accordance with the analyser manufacturers’ requirements.
- Competence can be demonstrated by satisfactory completion of the CPA1 ACS assessment, which covers the use of electronic portable combustion gas analysers in accordance with BS 7967, Parts 1 to 4.

Check the Combustion Performance (CO/CO₂ ratio)

4. Set the boiler to operate at maximum rate as described in Section 12.2.

5. Remove the cap from the flue sampling point, insert the analyser probe and obtain the CO/CO₂ ratio. This must be less than 0.004.

6. If the combustion reading (CO/CO₂ ratio) is greater than this, and the integrity of the complete flue system and combustion circuit seals has been verified, and the inlet gas pressure and gas rate are satisfactory either:
 - Perform the ‘Annual Servicing - Inspection’ (Section 14.2) & re-check.
 - Replace the gas valve (Section 15.8) & re-check.
14.2 Annual Servicing - Inspection

1. Ensure that the boiler is cool.

2. The boiler cannot be switched off at the boiler, therefore it is important to isolate the electrical supply at the mains fuse.

3. Hazardous materials are not used in the construction of these products, however reasonable care during service is recommended.

4. When replacing the combustion box door after servicing it is essential that the retaining screws are tightened fully.

5. Ensure that both the gas and electrical supplies to the boiler are isolated.

6. Remove the outercase and lower door panel (see Fitting the Outercase, Section 13.0).

WARNING: The PCB Control and Fan Assembly are 325 Vdc. Isolate at supply before access.

7. Release the four 1/4 turn screws securing the air box door panel and remove the door (Fig. 39).

8. Disconnect the leads from the centre and right hand terminals (earth and flame sensing probe) (Fig. 40). Reconnect in reverse order.

9. Undo the four screws securing the combustion box door and remove the door (Fig. 41).

10. Visually check for debris/damage and clean or replace if necessary the following:
 a) Burner.
 b) Heat exchanger fins.
 c) Fan compartment (Check also for condensate leaks).
 d) Insulation.
 e) Door seals-**Important:** Pay particular attention to the condition of the combustion box door seals.
 f) Electrodes.
 g) The condensate trap
 NOTE: Remove the trap drain plug and place a vessel underneath to catch the condensate (care should be taken as this could be hot). Clean the trap and refit the drain plug. Check for leaks.
 h) Top of heat exchanger.
14.1 Annual Servicing - Inspection (Cont)

11. To clean the heat exchanger and burner proceed as follows:

a) Disconnect the electrical leads to the fan component protection sensor (Fig. 42).

b) Loosen the screw retaining the gas injector pipe at the venturi (Fig. 42).

c) Undo the two wing nuts to disconnect the fan (Fig. 42).

d) Remove the fan and disconnect the electrical supply to it (Fig. 42).

e) Remove the gas injector pipe from the gas valve (push-fit) (Fig. 42).

f) Undo the condensate trap securing nut, lock nut and the condensate drain pipe. Remove the condensate trap and disconnect the sensor leads (Fig. 43).

g) Remove the two screws securing the burner and remove the burner. Visually inspect the internal burner baffle for obstruction, check seal around baffle for cracks/damage. Clean with a soft brush.

h) Loosen the two screws retaining the heat exchanger support bracket and slide to the left to remove (Fig. 44).

i) Remove the four screws securing the heat exchanger/combustion box base and withdraw the base.

j) Lower the central insulation panel and check condition (Fig. 44). Replace the lower insulation pad if necessary.

k) Ensure the heat exchanger fins are clear of any obstruction.

l) Check condition of all seals. Important: Pay particular attention to the condition of the combustion box door seals.

m) Reassemble in reverse order and check for leaks.

12. Check the CO/CO₂ ratio and CO₂ level at the flue sampling point (Fig. 41a) is as quoted in Section 4.0, ‘Technical Data’.

13. If the ratio or level is greater than that quoted telephone the Technical Enquiries for further advice.

IMPORTANT: No adjustment of the gas valve is permissible.

14. Complete the relevant Service Interval Record section of the Benchmark Commissioning Checklist at the rear of this publication and then hand it back to the user.
15.0 Changing Components

15.1 Changing Components

IMPORTANT: When changing components ensure that both the gas and electrical supplies to the boiler are isolated before any work is started.

“The boiler cannot be switched off at the boiler, therefore it is important to isolate the electrical supply at the mains fuse.”

Hazardous materials are not used in the construction of these products, however reasonable care during service is recommended.

When replacing the combustion box door after changing components, it is essential that the retaining screws are tightened fully.

After Changing Components a combustion check should be performed (see Section 15.8.11). This is especially important on gas carrying parts, and those that may affect combustion (e.g. fan).

1. Before changing any components please read Section 1.2 Important Information.

2. Remove the outer case and lower door panel (see “Fitting the Outercase” Section 13.0).

WARNING: The PCB Control and Fan Assembly are 325 Vdc. Isolate at supply before access.

3. Isolate the water circuit and drain the system as necessary. A drain point is located on the heat exchanger manifold at the right hand side of the boiler (Fig. 45) to enable the heat exchanger to be drained.

4. Place a tube on the drain point to drain water away from electrics. Turn anticlockwise to open (Fig. 45).

NOTE: When reassembling always fit new ‘O’ rings, ensuring their correct location on the spigot. Green “O” rings are used for gas joints and Black “O” rings for water joints. Use Greasil 4000 (Approved Silicone Grease).

5. After changing a component re-commission the boiler where appropriate and check the inhibitor concentration (see Section 6.2 and 12.1).

The thermistor, safety thermostat, interface PCB and flow switch and air pressure switch can be accessed after removal of the outer case.

15.2 Flow Temperature Thermistor and Safety Thermostat (Fig. 46)

1. The procedure is the same for both the thermistor and the safety thermostat.

2. Remove the electrical connections from the sensor.

3. Unscrew the sensor from the pipe.

4. Fit the new thermistor or safety thermostat and reassemble in reverse order.
15.0 Changing Components

15.3 Flowswitch (Fig. 47)

1. Drain the boiler (see Section 15.1 paragraph 2 & 3).
2. Remove the two screws on the support bracket.
3. Remove the clip securing the flow pipe to the flowswitch.
4. Disconnect the inline electrical connection.
5. Remove the air pressure switch and drip tray.
6. Pull pipe away from flowswitch.
7. Remove the two screws securing the flowswitch to the boiler.
8. Remove the flowswitch.
9. Fit the new flowswitch and reassemble in reverse order.
10. Recommission the boiler and check the inhibitor concentration (see Section 6.2 and 12.1).
15.4 PCB (Figs. 48 & 49)

WARNING: The PCB Control and Fan Assembly are 325 Vdc. Isolate at supply before access.

1. Remove the plastic button cover. Refit them onto the new PCB (Fig. 48).
2. Remove the top right hand securing screw and hinge down the PCB housing and disconnect the electrical connections noting their positions.
3. Lift Control PCB housing out of hinge housing of metal bracket.
4. Fit the new PCB Housing Assembly and reassemble in reverse order.

15.5 Air Pressure Switch (Fig. 49a)

1. Disconnect the two wires from the pressure switch.
2. Undo the screws securing the switch to the drip tray. The switch can now be eased out of the airbox.
3. When fitting the new switch ensure that the sealing grommet is in position.
4. Reconnect the wires to terminals 1 & 3 (Fig. 49b).
The fan and venturi, gas valve, injector pipe, condensate trap, fan protection sensor, spark and sensing electrodes can be accessed and changed on the removal of the airbox door panel.

1. Remove the airbox door panel by loosening the four 1/4 turn screws (Fig. 50).

15.6 Spark and Sensing Electrodes

(Fig. 51)

1. Disconnect all three leads from tabs.

 - Spark: Opaque cable
 - Earth: Green/Yellow cable
 - Sensing: White cable

2. Remove the two screws securing each of the electrodes to the combustion box door and remove the electrodes.

3. Fit the new electrodes (and new gasket, as required) and reassemble in reverse order.

15.7 Fan

(Fig. 52)

WARNING: The PCB Control and Fan Assembly are 325 Vdc. Isolate at supply before access.

1. Loosen the screw holding the injector pipe into the venturi.

2. Remove the electrical connections to the fan and protection sensor on the fan.

3. Remove the wing nuts securing the fan to the base of the combustion box.

4. Lower the fan and remove.

5. If changing the fan remove the screws securing the venturi and fan protection sensor bracket, noting the positions of the injector opening and sensor bracket, fix them to the new fan.

6. Fit the new fan and reassemble in reverse order.

The injector pipe, condensate trap and gas valve can be changed after the removal of the fan.
15.0 Changing Components

The removal of the fan is necessary to enable the changing of the injector pipe, condensate trap and gas valve (see section 15.7).

15.8 Injector Pipe (Fig. 53)

1. Remove the injector pipe by pulling out from the ‘O’ ring joint in the gas valve.
2. Fit the new injector pipe and reassemble in reverse order.

15.9 Gas Valve (Fig. 53)

1. Remove the Control PCB (see Section 15.4).
2. Isolate gas supply and disconnect the gas tap by removing the four screws.
3. Undo the case pressure pipe from the gas valve.
4. Disconnect the electrical plug from the gas valve.
5. Remove the fan (see section 15.7) and injector pipe.
6. Remove the two gas valve securing screws from inside the air box holding the gas valve.
7. Remove the gas valve from the airbox side.
8. Remove the aluminium spacer and its gasket from the gas valve.
9. Fit the aluminium spacer and gasket to the new valve.
10. Fit the new gas valve and reassemble in reverse order.

NOTE: Check for gas tightness after replacing gas valve.

11. Check the CO/CO\(^2\) ratio and CO\(^2\) level at the flue sampling point (Fig.41a) is as quoted in Section 4.0, ‘Technical Data’.
12. If the ratio or level is greater than that quoted, telephone the Technical Enquiries for further advice.

IMPORTANT: No adjustment of the gas valve is permissible.

15.10 Condensate Trap (Fig. 54)

1. Disconnect the condensate trap from the base of the heat exchanger.
2. Disconnect the condensate drain (outside the boiler) from the condensate trap.
3. Undo the condensate trap lock nut and remove the trap from the boiler. Disconnect the sensor leads.
4. Fit the new condensate trap and reassemble in reverse order.
5. Prime the condensate trap (fill first chamber), check for leaks.
15.0 Changing Components

The burner and heat exchanger can be changed after removal of the combustion box door. To change the heat exchanger, the fan and burner must be removed first (see section 15.7 and 15.11).

1. Remove the combustion box door by removing the four securing screws (Fig. 55).

 IMPORTANT: On refitting the combustion box door check the condition of the combustion box door seals.

15.11 Burner (Fig. 56)

1. Remove the two screws securing the burner to the base of the combustion box.

2. Remove the burner carefully from the combustion box base.

3. Check the burner seal on the heat exchanger base, replace if necessary. Fit the new burner and reassemble in reverse order.

15.12 Heat Exchanger

1. Drain the boiler (see section 15.1 paragraph 2 & 3).

2. Remove all components in the base of the airbox.

3. Remove the air pressure switch and drip tray.

4. Undo the screws on the support bracket. Remove the screws securing the flow switch and return connections and remove the connections (Fig. 57).

5. Remove the screws securing the heat exchanger manifold and remove the manifold (Fig. 58).

6. Lift the heat exchanger assembly (Fig. 59) and rotate the bottom upwards whilst pulling it forwards out of the airbox.

7. Fit the new heat exchanger and reassemble in reverse order.

8. Recommission the boiler and check the inhibitor concentration (see Section 6.2 and 12.1).
15.0 Changing Components

15.13 Heat Exchanger Lower Insulation Pad
(Fig. 60)

1. Remove all components in the base of the airbox.
2. Remove the burner (see section 15.11).
3. Remove the four bolts securing the combustion box base.
4. Remove the combustion box base.
5. Pull the central insulation panel down from the centre of the heat exchanger and remove the lower insulation pad.
6. Fit the new insulation pad and reassemble in reverse order.

15.14 Heat Exchanger Upper Insulation Pad
(Fig. 60)

1. Remove all components in the base of the airbox.
2. Remove the burner (see section 15.11).
3. Remove the heat exchanger (see section 15.12).
4. Remove the four bolts securing the combustion box base.
5. Remove the combustion box base.
6. Pull the central insulation panel down from the centre of the heat exchanger.
7. Fit the new insulation pad and reassemble in reverse order.
Short Parts List

<table>
<thead>
<tr>
<th>Key</th>
<th>G.C. No.</th>
<th>Description</th>
<th>Manufacturers Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>E06 058</td>
<td>Flow Temperature Thermistor (Red)</td>
<td>240670</td>
</tr>
<tr>
<td>B</td>
<td>E06 059</td>
<td>Flow Switch</td>
<td>242459</td>
</tr>
<tr>
<td>C</td>
<td>E58 912</td>
<td>Safety Thermostat (Black)</td>
<td>242235</td>
</tr>
<tr>
<td>D</td>
<td>H46 830</td>
<td>PCB</td>
<td>5121025</td>
</tr>
<tr>
<td>E</td>
<td>H13 177</td>
<td>Fan</td>
<td>5109925</td>
</tr>
<tr>
<td>F</td>
<td>H13 184</td>
<td>Gas Valve</td>
<td>241900</td>
</tr>
<tr>
<td>G</td>
<td>E06 085</td>
<td>Viewing Window</td>
<td>242484</td>
</tr>
<tr>
<td>H</td>
<td>H17 956</td>
<td>Condensate Trap</td>
<td>5111714</td>
</tr>
<tr>
<td>I</td>
<td>721 985</td>
<td>Electrodes Kit</td>
<td>5132097</td>
</tr>
<tr>
<td>J</td>
<td>H28 043</td>
<td>Burner Assy</td>
<td>5114009</td>
</tr>
<tr>
<td>K</td>
<td>E06 097</td>
<td>Heat Exchanger Assy</td>
<td>242497</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>Air Pressure Switch</td>
<td>7647992</td>
</tr>
</tbody>
</table>
17.0 Fault Finding

NOTE: The fan is supplied with 325 Vdc.

Fan Fault Finding should only be carried out after the boiler has been electrically isolated.

General Fault Finding should only be carried out by someone who is appropriately qualified.

Go to Ignition Lockout section of the fault finding instructions.

Go to Dry-Fire section of the fault finding instructions.

Go to Overheat Lockout section of the fault finding instructions.

Go to Fan Lockout section of the fault finding instructions.

Low Electrical Supply
Incoming Voltage less than 180V. Check System Controls & System Wiring. Otherwise contact Electricity Provider.

LV Wiring Harness Ensure 8-way PCB connector securely pushed in. If fault persists replace LV wiring harness.

PCB Fault Replace PCB.

PCB Fault Replace PCB.

PCB Fault Replace PCB.
17.0 Fault Finding

ELECTRICAL SUPPLY

- **240V at A?**
 - **NO**
 - No Switched Live to boiler. Check Systems Controls and System Wiring.
 - **YES**

- **240V at B?**
 - **NO**
 - Check wiring from terminal block to PCB.
 - **YES**

- **PCB fuse OK?**
 - **NO**
 - Check for shorts on pump, fan & gas valve. Replace if shorted & replace fuse.
 - **YES**

- **Replace PCB.**
17.0 Fault Finding

Are Flow & Return reversed?

- YES: Swop Flow & Return.
- NO: Is the system full of water?

- NO: Fill system with water and bleed out all air.
- YES: Is the pump running?

- YES: Unplug 5-way PCB connector. Is there continuity between H (run pump from switched live)?

- NO: Disconnect Flow Switch Inline connector. With pump running is there continuity across flow switch?

- NO: Remove flow switch from boiler. Is there a physical blockage to the paddle within the flow switch?

- NO: Is there a blockage in the system?

- NO: Replace Flow Switch.

- YES: Replace PCB.

- YES: Turn mains off & on. After 5 sec, is there 240V at E?

- NO: Wiring from terminal block to PCB faulty.

- YES: Turn mains off, unplug 7-way connector to PCB. Is there continuity between F and G?

- NO: Replace PCB.

- YES: Replace Flow Switch.

- YES: Remove Blockage.
IGNITION LOCKOUT

Is there gas at gas valve inlet?

YES

Reset Lockout.

Is there gas flow (check at meter)?

YES

Is there at least 18mbar dynamic at gas valve inlet?

YES

Remove Gas Valve & check inlet filter for blockage. Otherwise incorrect gas supply to boiler.

NO

NO

Is the burner blocked or damaged?

YES

Replace PCB.

NO

NO

Is there at least 18mbar dynamic at gas valve inlet?

YES

Remove 5-way connector from gas valve. Is there 240 Vdc between I & J during ignition?

NO

NO

Remove the larger or the two 6-way PCB connectors. Is there continuity from I to L & from J to K?

YES

Replace PC.

NO

NO

Is spark or flame detection probe damaged?

YES

Replace spark or flame detection probe and gaskets.

NO

Is spark gap between 3 and 4mm?

YES

Set spark gap to 3.5mm.

NO

Is wiring from PCB to spark probe & flame detection probe OK?

YES

Is the burner blocked or damaged?

YES

Clean burner or replace as necessary.

NO

Rectify wiring.
17.0 Fault Finding

OVERHEAT LOCKOUT

- Disconnect black stat on flow pipe. When flow < 60°C is there continuity across stat?
 - YES
 - Reconnect stat, Disconnect fan stat. When fan temp < 60°C is there continuity across stat?
 - YES
 - Reconnect stat, Disconnect the larger of the 6-way PCB connectors. Is there continuity across M?
 - NO
 - Wiring from PCB to thermostats faulty.
 - YES
 - Replace thermistor.
 - NO
 - Replace Stat.
 - NO
 - Replace Stat.

- Disconnect thermistor (red sensor on flow pipe). Is resistance between 0.5kΩ & 20kΩ?
 - NO
 - Replace thermistor.
 - YES
 - Replace combustion chamber door seal & trim seal.

- Is combustion chamber door seal damaged or not in place?
 - NO
 - Replace PCB.
17.0 Fault Finding

NOTE: The fan is supplied with 325 Vdc.

Fan Fault Finding should only be carried out after the boiler has been electrically isolated.

FAN LOCKOUT

Unplug 3-way PCB connector & unplug fan. Is there continuity from N to O & from P to Q?

- **NO** Rectify wiring.
- **YES** Unplug the smaller of the 6-way PCB connector. Is there continuity from R to S & from T to U & from V to W?
 - **NO** Rectify wiring.
 - **YES** Replace fan.
THERMISTOR

Unplug thermistor.
Is thermistor resistance between 0.5kΩ & 20kΩ ?

NO
Replace thermistor.

YES
Plug in thermistor, leave 8-way connector unplugged.
Is resistance at D between 0.5kΩ & 20kΩ ?

NO
Wiring from PCB to thermistor faulty.

YES
Replace PCB.

Viewed from Wire Entry end
This Commissioning Checklist is to be completed in full by the competent person who commissioned the boiler as a means of demonstrating compliance with the appropriate Building Regulations and then handed to the customer to keep for future reference.

Failure to install and commission according to the manufacturer’s instructions and complete this Benchmark Commissioning Checklist will invalidate the warranty. This does not affect the customer’s statutory rights.

<table>
<thead>
<tr>
<th>Customer name:</th>
<th>Telephone number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Boiler make and model:</td>
<td></td>
</tr>
<tr>
<td>Boiler serial number:</td>
<td></td>
</tr>
<tr>
<td>Commissioned by (PRINT NAME):</td>
<td>Gas Safe register number:</td>
</tr>
<tr>
<td>Company name:</td>
<td>Telephone number:</td>
</tr>
<tr>
<td>Company address:</td>
<td></td>
</tr>
<tr>
<td>Commissioning date:</td>
<td></td>
</tr>
</tbody>
</table>

To be completed by the customer on receipt of a Building Regulations Compliance Certificate

Building Regulations Notification Number (if applicable):

CONTROLS (tick the appropriate boxes)

<table>
<thead>
<tr>
<th>Room thermostat and programmer/timer</th>
<th>Programmable room thermostat</th>
<th>Load/weather compensation</th>
<th>Optimum start control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time and temperature control to heating</td>
<td>Time and temperature control to hot water</td>
<td>Cylinder thermostat and programmer/timer</td>
<td>Combination Boiler</td>
</tr>
<tr>
<td>Heating zone valves</td>
<td>Fitted</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Hot water zone valves</td>
<td>Fitted</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Thermostatic radiator valves</td>
<td>Fitted</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Automatic bypass to system</td>
<td>Fitted</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Boiler interlock</td>
<td>Provided</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALL SYSTEMS

- The system has been flushed and cleaned in accordance with BS7593 and boiler manufacturer’s instructions
- What system cleaner was used?
- What inhibitor was used?
- Has a primary water system filter been installed?

CENTRAL HEATING MODE

<table>
<thead>
<tr>
<th>Measure and record:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas rate m³/hr OR ft³/hr</td>
</tr>
<tr>
<td>Burner operating pressure (if applicable) mbar OR Gas inlet pressure mbar</td>
</tr>
<tr>
<td>Central heating flow temperature °C</td>
</tr>
<tr>
<td>Central heating return temperature °C</td>
</tr>
</tbody>
</table>

COMBINATION BOILERS ONLY

- Is the installation in a hard water area (above 200ppm)?
- What type of scale reducer has been fitted?

DOMESTIC HOT WATER MODE

<table>
<thead>
<tr>
<th>Measure and Record:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas rate m³/hr OR ft³/hr</td>
</tr>
<tr>
<td>Burner operating pressure (at maximum rate) mbar OR Gas inlet pressure at maximum rate mbar</td>
</tr>
<tr>
<td>Cold water inlet temperature °C</td>
</tr>
<tr>
<td>Hot water has been checked at all outlets Yes Temperature °C</td>
</tr>
<tr>
<td>Water flow rate 1/min</td>
</tr>
</tbody>
</table>

CONDENSING BOILERS ONLY

| The condensate drain has been installed in accordance with the manufacturer’s instructions and/or BS5546/BS6798 Yes |

ALL INSTALLATIONS

<table>
<thead>
<tr>
<th>Record the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>At max. rate: CO ppm AND CO/CO₂ Ratio</td>
</tr>
<tr>
<td>At min. rate: (where possible) CO ppm AND CO/CO₂ Ratio</td>
</tr>
<tr>
<td>The heating and hot water system complies with the appropriate Building Regulations Yes</td>
</tr>
<tr>
<td>The boiler and associated products have been installed and commissioned in accordance with the manufacturer’s instructions Yes</td>
</tr>
<tr>
<td>The operation of the boiler and system controls have been demonstrated to and understood by the customer Yes</td>
</tr>
<tr>
<td>The manufacturer’s literature, including Benchmark Checklist and Service Record, has been explained and left with the customer Yes</td>
</tr>
</tbody>
</table>

Commissioning Engineer’s Signature
Customer’s Signature

(To confirm satisfactory demonstration and receipt of manufacturer’s literature)

All installations in England and Wales must be notified to Local Authority Building Control (LABC) either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the customer.

© Heating and Hotwater Industry Council (HHIC)
It is recommended that your heating system is serviced regularly and that the appropriate Service Interval Record is completed.

Service Provider

Before completing the appropriate Service Record below, please ensure you have carried out the service as described in the manufacturer’s instructions. Always use the manufacturer’s specified spare part when replacing controls.

SERVICE 01	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

SERVICE 02	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

SERVICE 03	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

SERVICE 04	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

SERVICE 05	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

SERVICE 06	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

SERVICE 07	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

SERVICE 08	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

SERVICE 09	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

SERVICE 10	Date:
Engineer name:	
Company name:	
Telephone No:	
Gas safe register No:	
Record:	At max. rate: CO ppm AND CO₂ %
At min. rate: (Where Possible) CO ppm AND CO₂ %	
Comments:	
Signature	

All installations in England and Wales must be notified to Local Authority Building Control (LABC) either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the customer.
Baxi Customer Support

0344 871 1545

Opening hours
Monday - Friday, 8.00am-6.00pm
Weekends and Bank Holidays, 8.30am-2.00pm

Please note calls may be recorded for training and monitoring purposes

baxi.co.uk

Register now to activate your warranty:
www.baxi.co.uk/registration

For the warranty to be maintained, please make sure...

1. Benchmark checklist is completed
2. Warranty is registered within 30 days
3. The boiler has an annual service

For full terms and conditions, visit www.baxi.co.uk/terms. Failure to adhere to terms and conditions will void your manufacturer's warranty.

Baxi
Brooks House,
Coventry Road,
Warwick, CV34 4LL

Please ensure the boiler is installed in accordance with these installation instructions and that you adhere to the Building Regulations.

e&oe

All descriptions and illustrations provided in this document have been carefully prepared but we reserve the right to make changes and improvements in our products which may affect the accuracy of the information contained in this leaflet. All goods are sold subject to our standard Conditions of Sale which are available on request.